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Abstract

An analytical approach is used to investigate ground vibrations due to accelerating and decelerating trains. The ground

is modelled as a stratified half-space with linearly viscoelastic layers. On top of the ground, a rectangular embankment is

placed, supporting the rails and the sleepers. The rails are modelled as Euler–Bernoulli beams where the propagating forces

(wheel loads) are acting and the sleepers are modelled with an anisotropic Kirchhoff plate. The solution is based on

Fourier transforms in time and along the track. In the transverse direction the field in the embankment is developed in

Fourier series and the fields in the ground with Fourier transforms. The resulting numerical scheme is efficient and

displacements for a wide frequency spectrum can be considered. Numerical examples are given for an X2 train that

operates at the site Ledsgard in Sweden. In particular, the effects of the wheel traction from the driving wheel pairs or the

braking wheels (all wheels) are accounted for. The results at some instantaneous train speeds are compared to

corresponding constant train speeds.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

With ever faster trains, excessive ground vibrations have become a problem, particularly where the ground
consists of soft clays. In these materials, the shear wave velocity may be as low as 30240m=s, and is thus lower
than some operating train speeds. A well documented case with large vibrations due to high-speed trains
occurred at Ledsgard in Sweden [1–4].

Since the introduction of high-speed trains, the interest in modelling ground vibrations has increased. A
common analytical approach is to represent the track with an Euler–Bernoulli beam, supported on an elastic
ground. Dieterman and Metrikine [5] determine the critical speeds of a uniformly moving point load on an
Euler–Bernoulli beam and give further references. Recent contributions are made by Kaynia et al. [2],
Madshus and Kaynia [3] and Takemiya [4]. They model the track with a beam resting on a layered viscoelastic
half-space and favourably compare the results with the measurements at Ledsgard.

An alternative to the analytical method is of course to employ FEM or some other discretization method.
The advantage is the lack of restrictions on the geometries and the possibility to introduce nonlinear effects.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Recently, Ekevid and Wiberg [6] presented a model where the scaled boundary finite element method is used to
treat the infinite domains. A disadvantage, however, is that many degrees of freedom must be adopted, which
results in relatively small discretized regions. In this case, the model is 40m long and less than that in the
transverse direction (with a 107m long train).

All models presented so far deals with constant speeds. However, de Hoop [7] models a vertical point load
on an isotropic elastic half-space that is suddenly set into horizontal motion with a Heaviside unit step
function and a following constant velocity. For a point load moving on an elastically supported string, a
similar approach is used by Wolfert et al. [8] where a sudden increase in velocity from subcritical to
supercritical is simulated with a sudden change in string density.

In this paper, the refined semi-analytical model presented by Karlström and Boström [9] is used to
investigate the effects of accelerating and decelerating trains. Only the moving mass of the train is considered,
i.e. influence of rail roughness, etc. is not studied. The embankment is modelled on top of the ground as a
rectangular elastic region with finite width, supporting the rails and the sleepers. The rails are governed by
Euler–Bernoulli’s equation for flexural vibrations in the vertical and transverse directions and by the rod
equation for longitudinal movement. The sleepers are introduced as an anisotropic Kirchhoff plate. The
ground is modelled as a stratified half-space with viscoelastic layers.

2. Formulation of problem

To model a railway track, a rectangular embankment with the outer dimensions 2a� d is situated on the
surface of a layered ground, see Fig. 1. The model is defined in a cartesian coordinate system where x is the
coordinate along the track, y the transverse coordinate and z the vertical coordinate. On top of the
embankment, the rails are modelled as two Euler–Bernoulli beams with the width c at the positions �bR and
the sleepers as an anisotropic Kirchhoff plate with the dimensions 2bS � h. The ground consists of n layers,
which are positioned with the coordinates d12dn�1, see Fig. 1. Each wheel is treated as a vertical point load
acting on the rail: F ¼ F0dðx�

R t

0 V ðsÞdsÞ. F 0 is the amplitude, V ðtÞ the time-dependent velocity and t the
time. The wheel traction during acceleration and deceleration is also taken into account, given by the
longitudinal force F trac ¼ F trac;0 dðx�

R t

0 V ðsÞdsÞ, where F trac;0 ¼ mtrain
_V ðtÞ=Nwheels and mtrain is the weight of

the train and Nwheels is the total number of wheels transmitting the traction. A no-slip condition is assumed.
The displacement components in the embankment and in the layered ground are uj ¼ fuj ; vj ;wjg, where uj , vj

and wj are the cartesian components in the x, y and z direction, respectively. The index j represents the
embankment (j ¼ e) and the ground layers (j ¼ 1; 2; . . . ; n). The material in each layer is defined by the density
rj and the complex Lamé constants lj and mj. In this way, hysteretic damping (constant damping for all
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Fig. 1. A cross-section of the model showing geometrical properties and the applied wheel loads. The rails and the sleepers are introduced

as boundary conditions on top of the embankment.
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frequencies) is simulated. Provided the Fourier transform pair:

~f ðoÞ ¼
Z 1
�1

f ðtÞ eiot dt, (1)

f ðtÞ ¼
1

2p

Z 1
�1

~f ðoÞ e�iot do, (2)

for the time and frequency, the elastodynamic wave equation is given in the frequency domain:

ðlj þ 2mjÞrðr � ~ujÞ � mjr � ðr � ~ujÞ ¼ �rj o
2 ~uj, (3)

where ~uj is the displacement vector in layer j in the frequency domain. The wave speeds are given by cP
j ¼

ððlj þ 2mjÞ=rjÞ
1=2 and cS

j ¼ ðmj=rjÞ
1=2 for P and S waves. The traction on a plane with the normal direction ek

(k ¼ x; y; z) is given by

~t
ðekÞ

j ¼ ljekr � ~uj þ 2mjqk ~uj þ mjek � ðr � ~ujÞ. (4)

The gradient operator is defined as r ¼ fqx; qy; qzg.
At each interface between two layers, i.e. at the coordinates z ¼ dj between layer j and j þ 1, the

displacement and traction vectors are continuous:

~uj ¼ ~ujþ1; z ¼ dj, (5)

~t
ðezÞ

j ¼
~t
ðezÞ

jþ1; z ¼ dj . (6)

On the top surface the traction must vanish, except for the region under the embankment where the
displacement and traction vectors are continuous:

~u1 ¼ ~ue; jyjoa; z ¼ 0, (7)

~t
ðezÞ

1 ¼
~t
ðezÞ

e ; jyjoa; z ¼ 0;

0; jyj4a; z ¼ 0:

(
(8)

To enable a series expansion of the displacement field in the embankment (see Section 3.2), the boundary
conditions on the sides of the embankment must be designed in a special way:

~ve ¼ 0; jyj ¼ a; �dozo0,

qy ~ue ¼ 0; jyj ¼ a; �dozo0,

qy ~we ¼ 0; jyj ¼ a; �dozo0, (9)

which is achieved by choosing to restrict the normal displacement component ~ve to zero and using the natural
conditions on the shear stresses:

~ve ¼ 0; jyj ¼ a; �dozo0,

~sxye ¼ 0; jyj ¼ a; �dozo0,

~szye ¼ 0; jyj ¼ a; �dozo0. (10)

Karlström and Boström [9] show that this constraint on the normal displacement gives very good
approximations of the vertical displacement on top of and beside the embankment provided that the wheel
loads are applied vertically. Considering that the boundary condition on the shear stress ~szye ¼ 0 at the sides is
the natural one, this result is not unexpected. As the second shear stress component is zero, ~sxye ¼ 0, the
constraint ~ve ¼ 0 should also give a good approximation for the longitudinal displacement. It is however
important that the loading is applied in the x–z plane.

By the same reasoning, the displacements in the longitudinal direction are good approximations when the
traction due to acceleration is accounted for.
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On top of the embankment the two rails are placed. They are characterized by the cross-sectional area Ab,
the modulus of elasticity Eb, the mass density rb and the moment of inertia about the y- and z-axis Iyb and Izb

(subscript b denotes beam). In the transverse direction they are governed by Euler–Bernoulli’s equation and in
the longitudinal direction by the rod equation.

It is recently shown by Vostroukhov and Metrikine [10] that the vertical displacement due to train passage
over a track with discrete sleeper positions is almost identical to the results when the sleepers are uniformly
distributed along the track. Hence the mass and stiffness from the sleepers are accounted for by introducing a
transversely isotropic Kirchhoff plate [11]. The shear stiffness and the Young’s modulus in the x direction
should both be equal to zero if the rails are supported by sleepers. However, a slab track carries forces in the
longitudinal direction via the sleepers. A transversely isotropic plate model is able to describe both situations.
The plate material has a mass density rs, a modulus of elasticity Esk and Poisson’s ratio nsyz in the y–z plane
and Esx in the x direction and nsxk in the x–k plane, where k represents all directions perpendicular to the x

direction. In the x direction the shear modulus is Gsx and in the isotropic y–z plane it is simply
Gsk ¼ Esk=2ð1þ nsyzÞ. Note that nsxkEsx ¼ nskxEsk due to symmetry of the stiffness tensor. On the free surface
next to the plate, i.e. at bSpyoa, the traction vanishes.

The normal and transverse components of the traction on top of the embankment thus satisfy the boundary
conditions:

~szze ¼

�J1o2 ~we þ J2q
4
x ~we þ J3q

2
xq

2
y ~we þ J4q

4
y ~we; jyjobS; jyje½bR � c=2�;

�I1o2 ~we þ I2q
4
x ~we þ I3q

2
xq

2
y ~we þ I4q

4
y ~we � ~F=c; jyj 2 ½bR � c=2�;

0; bSpjyjoa;

8>><
>>: (11)

~syze ¼
ð�rbAbo2 ~ve þ EbIzbq

4
x ~veÞ=c; jyj 2 ½bR � c=2�;

0; jyje½bR � c=2�;

(
(12)

where

I1 ¼ J1 þ
rbAb

c
; J1 ¼ rsh,

I2 ¼ J2 þ
EbIyb

c
; J2 ¼

h3

12

E2
sx

Esx � Eskn2sxk

� �
,

I3 ¼ J3; J3 ¼
h3

6

EskEsxnsxk

Esx � Eskn2sxk

þ 2Gsx

� �
,

I4 ¼ J4; J4 ¼
h3

12

EskEsx

Esx � Eskn2sxk

� �
.

In the longitudinal direction the shear stress, ~sxze, accounts for both the coupling to the rails via the rod
equation and the transmitted traction force during acceleration or deceleration:

~sxze ¼
ð�rbAbo2 ~ue � EbAbq

2
x ~ueÞ=cþ ~F trac=c; jyj 2 ½bR � c=2�;

0; jyje½bR � c=2�:

(
(13)

The boundary conditions (11)–(13) are valid for z ¼ �d and all x.
3. Exact solution

The problem formulation implies that it is convenient to apply a Fourier transform also with respect to x,
where the corresponding transform variable is q. The Fourier transform pair for the space coordinate is

ḡðqÞ ¼

Z 1
�1

gðxÞ e�iqx dx, (14)
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gðxÞ ¼
1

2p

Z 1
�1

ḡðqÞ eiqx dq. (15)

The doubly transformed fields (with respect to t and x) are denoted by a hat.
Analytical solutions to the equations of motion (3) are obtained by decomposing the displacement field in

three scalar potentials in the embankment (j ¼ e) and in the ground layers (j ¼ 1; 2; . . . ; n):

ûj ¼ rĵj þ r� ðez ĉSHjÞ þ r � r � ðez ĉSVjÞ. (16)

Here jj , cSHj and cSVj are potentials for longitudinal, horizontal transverse and vertical transverse waves
which satisfy scalar wave equations.

3.1. Solution in the ground

In the layered ground, a Fourier transform in y makes it possible to represent the displacement fields by
employing the potentials:

ĵj ¼
1

2p

Z 1
�1

ðAjde
ihP

j ðz�dj�1Þ þ Ajue
�ihP

j ðz�djÞÞ eipy dp, (17)

ĉSHj ¼
1

2p

Z 1
�1

ðBjde
ihS

j ðz�dj�1Þ þ Bjue
�ihS

j ðz�djÞÞ eipy dp, (18)

ĉSVj ¼
1

2p

Z 1
�1

ðCjde
ihS

j ðz�dj�1Þ þ Cjue
�ihS

j ðz�dj ÞÞ eipy dp, (19)

where p is the transform variable to y. The wavenumbers are kP
j ¼ o=cP

j and kS
j ¼ o=cS

j (superscript P and S

denote P and S waves). Corresponding wavenumbers in the z direction are hP
j ¼ ðk

P 2
j � q2 � p2Þ

1=2 and
hS

j ¼ ðk
S 2
j � q2 � p2Þ

1=2, where Im hP
j X0 and Im hS

j X0. With this choice of the wavenumbers, Ajd ¼ Ajd ðpÞ,
Aju ¼ AjuðpÞ, Bjd ¼ BjdðpÞ, Bju ¼ BjuðpÞ, Cjd ¼ Cjd ðpÞ and Cju ¼ CjuðpÞ are the amplitudes of the down-going
(subscript d) and up-going (subscript u) P, SH and SV waves, respectively. In the last half-infinite layer (j ¼ n)
there are no reflected waves, i.e. Anu ¼ 0, Bnu ¼ 0 and Cnu ¼ 0, and the radiation condition with down-going
or evanescent waves has been applied. The dj�1 and dj in the exponents are crucial as they prevent exponential
growth. With this choice, the absolute value of the exponential functions never exceeds one. When j ¼ 1, by
definition: d0 ¼ 0.

When the coefficients are determined, solutions (17)–(19) are used together with (16) and reverse Fourier
transforms with respect to q and o to obtain the displacement fields.

3.2. Solution in the embankment

As mentioned, the displacement field in the embankment ðj ¼ eÞ can be developed in trigonometric series
and must satisfy the boundary conditions along the sides of the embankment (9). Due to the symmetric
loading, the field ue is symmetric about y ¼ 0, which means that ue and we are even and ve is odd. Hence they
are developed in Fourier cosine and Fourier sine series, with wavenumber pm ¼ mp=a in the y direction. This
gives the following choice for the potentials in (16):

ĵe ¼
X1
m¼0

ðD1m sin hP
mzþ E1m cos hP

mzÞ cos pmy, (20)

ĉSHe ¼
X1
m¼1

ðD2m sin hS
mzþ E2m cos hS

mzÞ sin pmy, (21)

ĉSVe ¼
X1
m¼0

ðE3m sin hS
mz�D3m cos hS

mzÞ cos pmy. (22)
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Dnm and Enm are unknown amplitudes, where n ¼1, 2 and 3 give the amplitudes for the P, SH and SV waves,
respectively. The wavenumbers are similar to those in the half-space, but with subscript e to denote the
embankment: kP

e ¼ o=cP
e and kS

e ¼ o=cS
e . Here the wavenumbers in the z direction are hP

m ¼ ðk
P 2
e � q2 �

p2
mÞ

1=2 and hS
m ¼ ðk

S 2
e � q2 � p2

mÞ
1=2, where the roots are defined so that Im hP

mX0 and Im hS
mX0.

Similarly to the ground, the displacement field can easily be determined employing Eqs. (20)–(22) together
with Eq. (16) and reverse Fourier transforms with respect to q and o.

3.3. General solution procedure

There are two possible methods to adopt to obtain the relation between the constants in the embankment
and the coefficients in the ground, one of which is the so-called Thomson–Haskell approach or transfer matrix
technique [12]. The idea is to obtain a linear relation between the coefficients by recursive elimination, starting
from the bottom layer. However, with increasing frequency the calculations will eventually suffer from
precision problems and the algorithm becomes unstable [12]. Sheng et al. [13] modify the method to overcome
the problem, whereas the global matrix approach used by e.g. Mal [12] is adopted in this model. The idea is to
obtain the coefficients in the ground expressed in the constants in the embankment simultaneously for each p

using the interfacial conditions (5)–(6) and the boundary condition (8). In this way all the unknowns Ajd , Aju,
Bjd , Bju, Cjd and Cju that depend on the continuous Fourier variable p can be expressed in Dnm and Enm (which
do not depend on p).

Employing an inverse Fourier series with respect to y over the width of the embankment (�aoyoa) of the
boundary condition (7) together with similar inverse Fourier series of the boundary conditions on top of the
embankment (11)–(13), the remaining unknowns Dnm and Enm are solved. The calculations are outlined in the
paper by Karlström and Boström [9].

3.4. The acceleration

The time-dependent velocity V ðtÞ is crucial in the Fourier transform of the force in Eq. (11):

F̂ ¼ F0

Z 1
�1

Z 1
�1

d x�

Z t

0

V ðsÞds

� �
eiðot�qxÞ dxdt (23)

and similar for the traction force in Eq. (13). However, if the train travels with the constant velocity V 0 the
expression is simplified:

F̂ ¼ F0

Z 1
�1

Z 1
�1

dðx� V 0tÞ e
iðot�qxÞ dxdt ¼ F 0

2p
jV0j

d
o

V 0
� q

� �
. (24)

This enables very fast computations, since the inverse Fourier transform with respect to q becomes trivial, i.e.
q ¼ o=V0 (typically around 1min for a 200� 200m2 domain with a frequency content of 0ofo3Hz).

The simulation for an accelerating or decelerating train takes much longer time than when a constant train
speed is considered. This is due to the extra integral over q in the reverse Fourier transform. The x integral in
Eq. (23) is trivial to carry out due to the Dirac delta function. But because of this the exponential function
becomes hard to integrate analytically over t. However, with a linear train velocity V ðtÞ and a careful choice of
the time history, see Fig. 2, Eq. (23) can be simplified:

F̂ ¼ F0
2p
jV 0j

d
o

V0
� q

� �
þ F 0

Z tend

0

e
iðot�q

R t

0
V ðsÞ dsÞ

� eitðo�qV0Þ

� �
dt. (25)

As the average velocity within t ¼ 0 and tend is V 0 and the constant velocities before and after is V0, the
transformed force is decomposed in the constant velocity contribution given by Eq. (24) and a time-dependent
part which involves the Fresnel integrals CðxÞ and SðxÞ defined by

CðxÞ ¼

Z x

0

cos
pt2

2
dt, (26)
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Fig. 2. The time history of the train speed used during deceleration and acceleration.
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SðxÞ ¼

Z x

0

sin
pt2

2
dt, (27)

which has to be evaluated by means of well-known series expansions.

4. Numerical examples

Madshus and Kaynia [3] use the program ‘‘VibTrain’’ described in [2] to predict the ground vibrations
observed at the site Ledsgard. They represent the track by a beam with finite elements resting on a layered
ground. A similar approach is taken by Takemiya [4], where the track is represented by an Euler–Bernoulli
beam. When the train travels with subcritical speeds, the strain levels in the ground are moderate, but as the
train speed is close to or higher than the Rayleigh wave speed for the ground, the strains increase drastically.
Due to nonlinearities in the soils, the material parameters become highly dependent on the velocity, therefore
mainly two train speeds have been investigated: 70 km/h (subcritical) and 200 km/h (supercritical). The ground
is modelled with five layers (n ¼ 5) and the soil parameters adopted for the present model are tabulated in
Table 1, based on the comprehensive measurements performed by the Swedish National Rail Administration
BANVERKET and used by Kaynia et al. [2], Madshus and Kaynia [3] and Takemiya [4].

Both the geometrical and material properties for the embankment are somewhat uncertain. For the beam
used in ‘‘VibTrain’’, Kaynia et al. [2] use the bending stiffness EI ¼ 200MNm2 at low train speeds and
EI ¼ 80MNm2 at high speeds, and the mass density is taken as 10 800 kg/m. In the paper presented by
Madshus and Kaynia [3], a cross-section of a part of the track structure at Ledsgard (consisting of three
tracks) is outlined. Assuming that Madshus and Kaynia [3] use a symmetric embankment with the dimensions
1:4� 8:0m2 to obtain the bending stiffness for their beams, the modulus of elasticity for the embankment is
obtained from the given bending stiffness at low and high train speeds (excluding the bending stiffness for the
rails).

By experience, see Ref. [9], the embankment defined by the cross-sectional area 0:5� 8:0m2 together with
the mass density re ¼ 1800 kg=m3 [3] and the Poisson ratio ne ¼ 0:3 gives results that agree very well with the
measurements at both 70 and 200 km/h at Ledsgard.

On top of the embankment the rails are placed. They are standard UIC60 rails with cross-sectional area
Ab ¼ 76:87 cm2, modulus of elasticity Eb ¼ 210GPa, density rb ¼ 7850 kg=m3 and moment of inertia about
the y- and z-axis Iyb ¼ 3055 cm4 and Izb ¼ 516:4 cm4 [14]. The base that is in contact with the embankment is
c ¼ 15 cm and the span of the rails is 2 bR ¼ 1:5m, see Fig. 1.

A standard mono-block sleeper coded NS 90 [14] has the outer dimensions 2520� 300� 233mm3 ðlength�
width� heightÞ and are distributed with the regular intervals 0.67m [3]. In this model, the distributed mono-
block sleepers are modelled with the transversely isotropic (in the y–z plane) Kirchhoff plate, which has the
width 2520mm, the height 233mm and an infinite length along the track. The weight of one sleeper is within
200–300 kg, why the average of 250 kg gives the mass density of the plate rs ¼ 635 kg=m3. With the modulus of
elasticity Es ¼ 38 450MPa for one sleeper [15] the stiffness in the y–z plane becomes Esk ¼ 38 450MPa. As the
sleepers are supported directly on the gravel on the embankment, the stiffness in the x direction is chosen to be
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Fig. 3. The X2 train configuration that is used in the model, showing the geometrical properties and the axle-loads F1–F5.

Table 1

Soil parameters from the test site Ledsgard [3,4], used in the simulations for low train speeds ðV0 ¼ 70km=hÞ and high train speeds

ðV0 ¼ 200km=hÞ

Soil layer Thickness (m) Mass density, rj (kg/m
3) cs (m/s) cp (m/s) Damping ratio, dj

V0 ¼ 70 V0 ¼ 200 V0 ¼ 70 V0 ¼ 200 V0 ¼ 70 V0 ¼ 200

Surface crust ðj ¼ 1Þ 1.1 1500 72 65 500 340 0.04 0.063

Organic clay ðj ¼ 2Þ 3.0 1260 41 33 500 360 0.02 0.058

Marine clay ðj ¼ 3Þ 4.5 1475 65 60 1500 1500 0.05 0.098

Marine clay ðj ¼ 4Þ 6.0 1475 87 85 1500 1500 0.05 0.064

Marine clay ðj ¼ 5Þ 1 1475 100 100 1500 1500 0.05 0.060
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zero, Esx ¼ 0MPa, as well as the shear modulus, Gsx ¼ 0MPa. The Poisson’s ratio is assumed to be nsyz ¼

nsxk ¼ 0:2 with some uncertainty, but experience shows that this does not affect the results (k is any direction
perpendicular to the x direction).

The axle-load is introduced via Eqs. (11), (23) and (24) and in the model it is superimposed to yield an X2
train with five cars, one of which is the engine, see Fig. 3. It has the same configuration as the train that
operated along the west coast line during the measurements at Ledsgard [1–4]. When the train accelerates it is
assumed that the two wheel pairs denoted with F2 are transmitting the driving traction force and when it
decelerates all wheels are assumed to brake simultaneously.

4.1. The instantaneous speed, 70 km/h

The speed history of the X2 train in Fig. 2 is chosen to simulate an acceleration/deceleration of
j _V ðtÞj � 2:2m=s2. This is obtained by choosing V0 ¼ 90 km=h, DV ¼ 40 km=h, t1 ¼ 5 s, t2 ¼ 20 s, t3 ¼ 30 s,
t4 ¼ 45 s and t5 ¼ 50 s. Hence, the velocity, 70 km/h, that is of interest occurs after 2.5 s during the deceleration
and after 22.5 s during the acceleration.

In Fig. 4, the frequency responses (at the right) are seen for the vertical displacements on top of the
embankment at y ¼ 0 where the middle of an X2 train passes with the instantaneous velocity of 70 km/h
during deceleration (dotted curve) and during acceleration (dashed curve). In addition, the response at the
constant velocity of 70 km/h is shown (solid line). The corresponding time domain results are plotted relative
to the front of the train at the left. Here it can be stated that when the train brakes with all wheels, the vertical
displacement is almost identical to the case when the train travels with constant speed. This is also seen in the
frequency spectrum, where the levels are overall the same as for the constant train speed. However, the
interference pattern is shifted towards lower frequencies, at least for frequencies less than 2Hz.

The similar time domain result is obtained when the train accelerates, but with somewhat reduced
displacement levels under the last half of the train and on the tail left behind the train. The levels of the
frequency response are in general the same as for the other cases, but with a higher contribution at about
0.8Hz.
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Fig. 4. Vertical response at the instantaneous speed of 70 km/h for a train at constant speed (solid curve), at deceleration (dotted curve)

and at acceleration (dashed curve). The time domain result is seen in the left figure and the frequency spectra in the right at a position

under the middle of the train at y ¼ 0 and z ¼ �d.

Fig. 5. Longitudinal response at the instantaneous speed of 70 km/h for a train at constant speed (solid curve), at deceleration (dotted

curve) and at acceleration (dashed curve). The time domain result is seen in the left figure and the frequency spectra in the right at a

position under the middle of the train at y ¼ 0 and z ¼ �d.
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Similarly to the vertical response, the longitudinal (in the x direction) frequency spectra and physical
displacement components ue relative the front of the train are shown in Fig. 5. As expected, the displacements
under the wheels are positive during the retardation and negative during the acceleration. In particular, the
acceleration causes a large shear at the wheel contacts under the driving wheel pairs. In the frequency response
it is seen that the longitudinal displacements for the three cases are dominated by frequencies less than 1Hz
and that the static contribution during deceleration is in particular high (about 4.5mm s at 0Hz).

4.2. The instantaneous speed, 200 km/h

The displacements for the high-speed train has been investigated around 200 km/h in a similar way as for the
low-speed train. The same amount of acceleration is adopted, which means that the average velocity has to be
changed to V0 ¼ 220 km=h.
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In Fig. 6, the vertical displacement is seen at a position under the middle of the train and at y ¼ 0 and
z ¼ �d. In the left figure, the time domain results are shown for the constant train speed (solid curve), the
decelerating train speed (dotted curve) and the accelerating train speed (dashed curve). At the right, the
corresponding frequency contents are shown. As for the low train speed, the time domain displacements agree
relatively well during the deceleration and the acceleration compared to the constant speed. This is also seen in
the frequency response plot. The same shift as for the low train speed is however not seen at higher train
speeds.

Similarly in Fig. 7, the longitudinal displacements at 200 km/h are seen under the middle of the train at
constant velocity (solid curve), during deceleration (dotted curve) and during acceleration (dashed curve). To
Fig. 6. Vertical response at the instantaneous speed of 200 km/h for a train at constant speed (solid curve), at deceleration (dotted curve)

and at acceleration (dashed curve). The time domain result is seen in the left figure and the frequency spectra in the right at a position

under the middle of the train at y ¼ 0 and z ¼ �d.

Fig. 7. Longitudinal response at the instantaneous speed of 200 km/h for a train at constant speed (solid curve), at deceleration (dotted

curve) and at acceleration (dashed curve). The time domain result is seen in the left figure and the frequency spectra in the right at a

position under the middle of the train at y ¼ 0 and z ¼ �d.
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the left, the time domain displacements are shown and to the right the frequency spectra. As for the train at
70 km/h, the deceleration gives large positive displacements at the wheel contacts and during the acceleration
the two driving wheel pairs causes the ground to deflect in the negative direction. Compared to the case at
70 km/h, the shear during deceleration is increased with more than a factor three, whereas the acceleration
gives the similar amplitudes. The frequency response consists of large static contributions, mainly for the
decelerating train (about 3.5mm s at 0Hz), but contrary to the low train speed also components of higher
frequencies (up to 7.5Hz) are significant. The differences in the time domain displacements between the three
cases are however only due to differences for frequencies lower than 3Hz.

5. Concluding remarks

In this paper, the ground vibrations from an accelerating X2 train is investigated with the presented semi-
analytical approach. Especially, the effects of the wheel traction is accounted for. During deceleration, all
wheels are assumed to act simultaneously, while during acceleration only the traction from the two driving
wheel pairs are added. Simulated displacements on top of the embankment are investigated at the
instantaneous train speeds of 70 and 200 km/h. In addition, the results for the corresponding constant train
speeds are included.

At both 70 and 200 km/h, the differences in vertical displacement between a train at constant velocity and
both an accelerating and a decelerating train are relatively small. In the longitudinal direction, however, there
are large differences. During deceleration, the wheel traction causes a large positive shear of the surface
material in the embankment. The opposite occurs during acceleration, where in particular the driving wheel
pairs cause a large shear of the surface material under their wheel contacts. The behaviour is typical at both 70
and 200 km/h and the deflections are dominated by low frequencies.
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